Placental transport of brevetoxin-3 in CD-1 mice

Janet M. Bensona, Andrea P. Gomeza, Gloria L. Statoma, Brad M. Tibbettsa, Lora E. Flemingb, Lorraine C. Backerc, Andrew Reichd and Daniel G. Badene

aLovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE., Albuquerque NM 87108, USA
bNational Institute of Environmental Health Sciences, Marine and Freshwater Biomedical Science Center, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
cNational Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, GA 30341-3724, USA
dFlorida Department of Health, 2585 Merchants Row Building, Tallahassee, FL 32399, USA
eCenter for Marine Science Research, University of North Carolina Wilmington, 5600 Marvin K. Moss Ln., Wilmington, NC 28409, USA

Abstract

The purpose of this study was to examine the distribution of brevetoxin-3 administered to pregnant dams and to determine the extent of placental transport to fetuses. Twenty-nine pregnant CD-1 mice were administered 3H-brevetoxin-3 (\(\sim 1.3 \mu\text{Ci/animal; } \sim 2.8 \mu\text{g compound/kg}\)) by intratracheal instillation on one of gestational days 15–18. Groups of four or five dams were killed at selected times through 48 h post-dosing. Four pregnant dams were administered 3H-brevetoxin-3 on gestational day 15 or 16 via osmotic minipump to provide continuous delivery of compound (\(\sim 0.13 \mu\text{Ci, 7.5 ng compound/day}\)) over a 72-h period. Then the dams and fetuses were killed. Brevetoxin-associated radioactivity was detected in placentas and fetuses within 0.5 h of intratracheal administration. Concentrations of brevetoxin equivalents in fetuses were approximately 0.3 ng/g throughout the 48-h post-dosing, resulting in a calculated dose to fetuses of 19 ng/g h. Following brevetoxin infusion, concentration of brevetoxin equivalents in fetuses was 0.1 ng/g, lower than that present in most maternal tissues. Results demonstrated placental transport of brevetoxin or its metabolites following maternal acute exposure and repeated low-dose exposure. The consequences of these findings for pregnant women exposed to brevetoxins by inhalation or ingestion remain to be determined. \textit{Toxicon, Volume 48, Issue 8}, 15 December 2006, Pages 1018-1026